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Generalizing the Debye-Hückel equation in terms of density functional integral
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We discuss the validity of generalized Debye-Hu¨ckel ~GDH! equation proposed by Fisheret al. @B. P. Lee
and M. E. Fisher, Phys. Rev. Lett.76, 2906 ~1996!; Europhys. Lett.39, 611 ~1997!; M. N. Tamashiro, Y.
Levin, and M. C. Barbosa, Physica A268, 24 ~1999!#, from the functional integral point of view. The GDH
theory considers fluctuations around prescribed densities of positive and negative charges. Hence, we first
formulate a density functional integral expression for the canonical system of Coulomb gas, and also demon-
strate that this is a dual form to the sine-Gordon theory. Our formalism reveals the following:~i! The induced
charge distribution around supposed density favors not only the cancellation of additional electrostatic poten-
tial like the original DH theory, but also the countervailing of chemical potential difference between imposed
and equilibrium value.~ii ! As a consequence apparent charge, absent in the GDH equation, comes out in our
generalized equation.~iii ! That is, the GDH equation holds only in special cases.

PACS number~s!: 61.20.Qg, 82.70.Dd, 61.20.Gy, 05.20.2y
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Much attention in recent years has been paid to no
phenomena of ionic fluids and charged colloids, such as
expected behaviors of critical exponents in ionic fluids@1#,
~micro!phase separation of charged colloids@2#, attraction
between similarly charged objects@3#, and so on. Of the
numerous theoretical attempts for explaining these,
Rapid Communication will be particularly concerned with
relevant tool for studying the ionic criticality: generalize
Debye-Hückel ~GDH! theory proposed by Fisheret al. @4,5#.
Then let us first see what isgeneralized.

One will find two extensions from the GDH equations~1!
and~2! given below. Before doing so, however, the setting
to be described: Consider here the restricted primitive mo
@6#, consisting of two oppositely charged, but otherw
identical, sets ofN[N15N2 hard spheres of diametera
and charge per particle6e, immersed in a medium of dielec
tric constante. Also denote byC1(r ;r1) the mean electro-
static potential in thekBT/e unit ~the others being the same!
at a general pointr when the positive charge 1 is fixed atr1,
and by C imp(r ) the imposed electrostatic potential dete
mined from prescribed densities of positive and nega
charges, i.e., n1(r ) and n2(r ) as ¹2C imp(r )
524p l BQ(r ) with putting that l B[c2/ekBT ~Bjerrum
length! andQ5n12n2 .

Fisheret al. @4,5# advocate that the ‘‘local induced poten
tial’’ defined by C̃1(r ;r1)[C1(r ;r1)2C imp(r ) be to sat-
isfy the GDH equations as follows:

¹2C̃1~r ;r1!524p l B@d~r2r1!2Q~r !#, ur2r1u<a,
~1!

¹2C̃1~r ;r1!5k2~r !C̃1~r ;r1!, ur2r1u>a, ~2!

implying modifications that are in order:

~i! A remarkable difference from the original DH equatio
@7# is seen in Eq.~2! where the Debye-Hu¨ckel screening
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length k21 is generalized to be spatially dependent on
supposed densities ask2[4p l B@n1(r )1n2(r )#.

~ii ! There also appears, unlike the primary version,
second term on the right-hand side of Eq.~1! representing an
effective ‘‘cavity source’’ term.
The validity of these two generalizations are what we wo
like to investigate using the language of density functio
integral.

For the convenience of a later discussion, let us furt
detail the GDH theory@4,5# exploiting the above equation
~1! and ~2!. According to this theory, the Helmholtz fre
energyF ~in kBT units! as sum of the imposed and induce
free energy,F5Fimp1Find , is given in the following den-
sity functional form:

Fimp5E drdr 8
l B

2
Q~r !

1

ur2r 8u
Q~r 8!1E dr n1 ln n1

1n2 ln n22n12n2 , ~3!

Find5 (
s51,2

E dr 1ns~r1!E
0

1

dlFs~r1 ;le!, ~4!

whereFs(r1 ;le) is the meaninducedelectrostatic potentia
at the site r1 of a fixed ion defined asFs(r1 ;e)
[ limr→r1

@C̃s(r ;r 1)2s l B /ur2r 1u# (s51,2). The GDH

theory especially imposesns (s51,2) on such a simple
undulation as

ns5n̄@11L cos~k•r1us!#. ~5!

Consequently the quadratic terms ofL in the free energy
difference,F($ns%)2F($n̄%), gives the Fourier transform o
various correlation functions by taking either phase,Du
[uu12u2u50 or p, on a case-by-case basis. Thus th
approach, in contrast to the original DH analysis, has s
ceeded in yielding both charge-charge oscillatory corre
tions at high densities~whereDu5p is taken! and density-
density correlations~whereDu50) that exhibit a divergent
correlation length at criticality.
R6079 ©2000 The American Physical Society
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Indeed, the validity of the GDH theory is strongly su
gested not only by the above usefulness of this method,
also from satisfying both the Stillinger-Lovett sum rule@4,5#
and the exact low-density limiting-law for various correl
tion lengths@8#. In terms of functional integral, however, th
GDH equations~1! and~2! arenevertrivial, due to the irrel-
evance of the sine-Gordon~SG! mapping @9#. The details
follow: With use of the chemical potentialsms (s51,2)
and the charge density operatorq̂(r ) defined asq̂[r̂1

2 r̂2 by the number density operatorsr̂6[( i 51
N d@r2r i

6#,
the grand partition functionJ reads

J5 (
N50

`
em1N

N! (
N50

`
em2N

N!
Z, ~6!

where

Z[E d$r2N%expF2
l B

2 E drdr 8
q̂~r !q̂~r 8!

ur2r 8u
G , ~7!

with putting thatd$r2N%[) i 51
N dr i

1) j 51
N dr i

2 . In the conven-
tional SG mapping, Eqs.~6! and ~7! are Hubbard-
Stratonovich transformed@10# to the functional integral of
potential field, not of density. Therefore, within the SG
frame, it is impossible to evaluate fluctuations around i
posed number densities~not around prescribed potential! as
the GDH theory does.

To generalize the original Debye-Hu¨ckel equation as
Fisheret al. @4,5# propose, it is hence indispensable to tran
form expressions~6! and ~7! to the density functional inte
gral formalism. The former part in the remainder is th
devoted to both its formulation and comparison with the
theory. In the final analysis, this formalism will reveal th
the GDH equations~1! and ~2! hold only in special cases.

Recently we have shown@11# that a dual method to the
above Hubbard-Stratonovich way enables to transform
configurational integral expressions~6! and~7! to the follow-
ing density functional integral representation:

J5 )
s51,2

E Drs exp~2HJ$r6%!, ~8!

HJ$r6%[
l B

2 E drdr 8
q~r !q~r 8!

ur2r 8u
1 (

s51,2
E drrs ln rs2rs

2rsms , ~9!

where Drs})$r ‰drs , and q and rs are c-numbers of the
corresponding operators.

What is required in Eqs.~3! and ~4!, however, is the
Helmholtz free energy. We then move to the canonical p
tition function Z, via performing the following contour inte
gral,

Z5 )
s51,2

1

2p i R dls

J

ls
N11

, ~10!

wherels5ems is now a complex variable. Substituting Eq
~8! and ~9! into the integrand, we have
ut

-

-

e

r-

Z5 )
s51,2

E Drs expF2HJ$r6%

2 (
s51,2

E drmsrsG 1

2p i R dlsls
212[N2*dxrs(x)] .

~11!

Since one finds from the Cauchy’s integral theorem

1

2p i R dlsls
212[N2*dxrs(x)]

5H 1 if E dxrs~x!5N

0 otherwise,
~12!

Eq. ~11! is formally rewritten as

Z5 )
s51,2

E Drs exp@2HZ$r6%#dF E drrs~r !2NG ,
~13!

HZ[
l B

2 E drdr 8
q~r !q~r 8!

ur2r 8u
1 (

s51,2
E drrs ln rs2rs .

~14!

We have thus established the framework of whicha priori
use@12–14# has been made so far.

Before entering into the main question, let us also see
the density functional integral formalism gives back the S
theory of the canonical version. To this end we first intr
duce electrostatic potential fieldc(r ) via using the equiva-
lence between Eqs.~13! and ~14! and the following form:

Z5E Dc )
s51,2

E Drs exp@2HSG$r6 ;c%#

3dF E drrs~r !2NG , ~15!

HSG$r6 ;c%[E dr 2
1

8p l B
~¹c!21~r12r2!c

1 (
s51,2

E drrs ln rs2rs . ~16!

In these expressions, quadratic fluctuations of the den
field around the saddle-point path$r6

sp% are negligible as has
been shown elsewhere@11#. Therefore, Gaussian approxima
tion to $r6% reduces to the substitution of the Boltzman
distribution, rs

sp5rs
0 exp(2sc) (s51,2), into Eq. ~16!,

yielding

Z5E Dc exp@2HSG$r6
sp ;c%#, ~17!

HSG$r6
sp ;c%52E dr

1

8p l B
~¹c!21 (

s51,2
rs

0e2sc,

~18!

where the total number invariance leads tors
0

5N/*dre2sc. The above transformation demonstrates t
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our formalism, Eqs.~13! and~14!, is a dual expression to th
canonical SG theory, though there also exists a merit that
Hamiltonian ~14! has two arguments~number densities o
positive and negative charges! unlike the SG theory.

We now return to the starting formulas,~13! and~14!, and
consider the effect of quadratic fluctuations around the p
scribed number densitiesn6 on the electrostatic potentia
Setting thatr̃s5rs2ns (s51,2) and q̃5 r̃12 r̃2 , and
separating the imposed free energyFimp , we have

Z5e2Fimp )
s51,2

E D8r̃se2H̃Z$r̃6%dF E dr r̃s~r !G ,
~19!

H̃Z$r̃6%[
l B

2 E drdr 8
q̃~r !q̃~r 8!

ur2r 8u
1 (

s51,2
E dr

r̃s
2

2ns

1 r̃s~sC imp1 ln ns!, ~20!

where fixing positive charge 1 atr1 is taken into account by
changing the definition of the integral measure asD8r̃s

}) ur12r u>adr̃s , following the treatment of Fisheret al.

@4,5#. With use of expressions~19! and ~20!, however,
Gaussian integration overr̃s is not straightforward due to
the spatial dependence of the prescribed densitiesns (s5
1,2) other than conventional cases@12#.

We then take a detour to introduce the induced poten
c̃[c2C imp similarly to Eqs.~15! and ~16!:

Z5e2FimpE Dc̃ )
s51,2

E dnsE D8r̃se2H̃SG$r̃6 ;n6 ;c̃%,

~21!

H̃SG$r̃6 ;n6 ;c̃%[E dr 2
1

8p l B
~¹c̃!21~ r̃12 r̃2!c̃

1 (
s51,2

E 8
dr

r̃s
2

2ns
1 r̃s~sC imp1 ln ns!

2E dr i r̃sns , ~22!

where use has been made of the identity thatd@*dr r̃s(r )#

5*dns exp(ins*dr r̃s), and *8dr denotes the integration
with omitting the regionDr 1[ur12r u<a. In these expres-
sions Gaussian integration overr̃s and ns becomes trivial,
though the resulting form is somewhat complicated:

Z5e2FimpE Dc̃e2H̃SG$r̃6
sp ;nsp;c̃%, ~23!
he

e-

al

H̃SG$r̃6
sp ;n6

sp ;c̃%

5E dr2
~¹c̃!2

8p l B
1@d~r2r1!2Q~r !#g~Dr 1!c̃

2 (
s51,2

E 8
dr

ns

2
~sc̃1sC imp1 ln ns!2

1 (
s51,2

1

2

H2r̃s
f ix1E8

drns~sc̃1sC imp1 ln ns!J 2

E 8
drns

,

~24!

where the step functiong(Dr 1) is 1 for Dr 1<a and 0 oth-
erwise, and we definer̃s

f ix(s51,2) as r̃1
f ix[@d(r2r1)

2n1(r )#g(Dr 1) and r̃2
f ix[2n2(r )g(Dr 1).

Equations~23! and~24! imply that the saddle-point path
satisfy the following relations:

q̃sp52 (
s51,2

sns~sc̃1sC imp1 ln ns2 ins
sp!, ~25!

and

ins
sp5

2 r̃s
f ix1E 8

drns~sc̃1sC imp1 ln ns!

E 8
drns

, ~26!

whereq̃sp5 p̃1
sp2 p̃2

sp. We can easily check that these redu

to q̃sp522n̄c̃ and ins
sp5 ln n̄ in the conventional case o

ns5n̄. Such reduction demonstrates that our formulat
correctly includes the original DH theory@7#, and that
ins

sp(s51,2) merely correspond to the chemical potentia
ms in equilibrium.

Thus expression~25! with ~26! provides the physical in-
sight into fluctuations around prescribed densities as follo
in general the induced charge density distributionq̃sp around
supposed density favors not only the cancellation of ad
tional electrostatic potentialc̃ like the original DH theory,
but also the countervailing of the chemical potential diffe
ence between imposed and equilibrium value,

Dms[sC imp1 ln ns2 ins
sp . ~27!

Finally let us write down the DH-like equations genera
ized via density functional integral formalism. Saddle-po
approximation to Eqs.~23! and ~24! yields

¹2C̃1~r ;r1!524p l B@d~r2r1!2Q~r !#, ur 12r u<a,
~28!

¹2C̃1~r ;r1!5k2~r !C̃1~r ;r1!24p l Bqap~r !, ur12r u>a,
~29!

where the saddle-point path of$c̃% is identified with C̃1

used in the GDH equations~1! and ~2!, and qap
[2(s51,2snsDms is the apparent charge arising from th
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chemical potential differenceDms given by Eq.~27!. Note
also that Eq.~29! corresponds to the equation that¹2C15
24p l Bq̃sp with use of Eq.~25!. Comparing our equation
~28! and ~29! with the GDH ones~1! and ~2!, one immedi-
ately finds that the former equations are different from
latter, in that the apparent chargeqap comes out on the right
hand side of Eq.~29!, though both the spatially depende
screening lengthk21(r ) and the cavity source term@4p l BQ
in Eq. ~28!# can be reproduced indeed.

Accordingly, the remaining problem is to investiga
when the apparent chargeqap in Eq. ~29! disappears. A
trivial condition is the chemical equilibriumDms50, where
the Boltzmann distributionns5exp(ms2sCimp) is satisfied.
In such cases, though, what is imposed is not densities
potential, and the associated equations, already verified@13–
16#, are directly obtainable from the conventional SG theo
not via our formalism; this is not the case with us. A releva
case is to imposens on relation~5! with Du50 as the GDH
theory does, whereC imp50 and the apparent chargeqap is
negligible under the constraint thatn1

sp5n2
sp .
A

P

-

e

ut

,
t

We thus conclude from the functional integral point
view the following: The GDH equations~1! and~2! proposed
by Fisheret al. @4,5# are valid for the prescribed densities
ns5n̄@11L cos(k•r )#, i.e., Du50, where the density-
density correlation length has been extracted@4#. However,
in the other case ofns5n̄@11sL cos(k•r )#(s51,2), i.e.,
Du5p, where both the charge-charge correlation length a
the Lebowitz length have been derived@4,8#, we have

qap'2n̄C imp1Q1O@L2#, ~30!

and hence apparent charge is to be considered explicitl
the calculation ofC̃1 ; evaluating to what extent the add
tional term changes the previous results@4,8# remains a fu-
ture problem.
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